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Lagrangian similarity hypothesis applied to 
diffusion in turbulent shear flow 

By J. E. CERMAK 
College of Engineering, Colorado State University 

(Received 17 July 1962) 

The concept suggested by Batchelor that motion of a marked particle in turbulent 
shear flow may be similar a t  stations downstream from the point of release is 
applied to a variety of diffusion data obtained in the laboratory and in the 
surface layer of the atmosphere. Two types of shear flow parallel to a plane solid 
boundary are considered. In  the first case mean velocity is a linear function of 
log z (neutral boundary layer) and in the second case the mean velocity is slightly 
perturbed from the logarithmic relationship by temperature variation in the 
z-direction (diabatic boundary layer). Besides the parameters introduced in 
previous applications of the Lagrangian similarity hypothesis to turbulent 
diffusion, the ratio of source height to roughness length h/z, is shown to be of 
major importance. Predictions of the variation of maximum ground-level 
concentration for continuous point and line sources and the variation of plume 
width for a continuous point source with distance downstream from the source 
agree with the assorted data remarkably well for a range of length scales ex- 
tending over three orders-of-magnitude. It is concluded that results from 
application of the Lagrangian similarity hypothesis are significant for the 
laboratory modelling of diffusion in the atmospheric surface layer. 

1. Introduction 
Although no model exists for the turbulent motion in shear flow from which 

a detailed theory of turbulent diffusion may be constructed, gross character- 
istics of the concentration field may be predicted through use of similarity 
arguments. Batchelor (1957) demonstrated the power of similarity reasoning 
when he applied the hypothesis that turbulent motions of particles in steady, 
self-preserving, free shear flow possess similarly in the Lagrangian sense. Based 
on this hypothesis he was able to predict that dispersion and maximum mean 
concentrations are proportional to certain powers of x for single particle release 
and continuous particle release. The application of Lagrangian similarity 
arguments to a turbulent shear flow produced by flow aIong a solid boundary 
(boundary-layer flow) in the region where mean velocity varies as the logarithm 
of wall distance z was later suggested by Batchelor (1959a). For this case where 
the Eulerian properties of the turbulence structure depend only upon the shear 
velocity ul, Batchelor (1959b) and Ellison (1959) determined the way in which 
the maximum mean concentration at ground level decreases with x at large 
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distances from a continuous point or line source of passive particles released 
at  ground level. When u* is fixed, the roughness length zo appearing in the theory 
is assumed to affect only the translational velocity of the turbulence field a t  
sufficiently large distances from the boundary with no change in the turbulence 
structure. 

The basic formulation of Batchelor and Ellison is used here to predict the way 
in which gross characteristics of the concentration field for continuous point 
and line sources vary with x when the source height is arbitrary and x is not 
necessarily large. This extended formulation permits use of data from both 
atmospheric and laboratory diffusion experiments in checking theoretical 
predictions based on the Lagrangian similarity hypothesis. Laboratory data 
are provided by a group of studies conducted in a wind tunnel where a tracer 
gas was diffused (Davar 1961; Poreh 1962; Malhotra 1962) and where heat was 
diffused (Wieghardt 1948). Atmospheric diffusion data within a neutral surface 
layer are available from the studies a t  Porton (Pasquill 1962) and, for approxi- 
mately neutral conditions, from Project Prairie Grass (Barad 1958). 

When vertical temperature gradients greater or smaller than the adiabatic 
lapse rate exist in the atmospheric surface layer the mean velocity no longer 
varies linearly with log x and gross characteristics of the concentration field 
behave differently than for a neutral atmosphere. Gifford (1962) applied the 
Lagrangian similarity hypothesis to diffusion in a non-neutral or diabatic surface 
layer by using a mean velocity distribution modified to include the effects of 
thermal stratification. The modification used was based on the assumption of 
Eulerian similarity in which the turbulence characteristics are completely 
determined by the shear velocity u* and the stability length L (Monin & Obukhov 
1954), and that the roughness length zo, for fixed L and u*, affects only the mean 
velocity of translation. The calculated exponents of x for attenuation of mean 
concentration obtained by Gifford were in reasonable agreement with experi- 
mental values obtained from Project Prairie Grass (Cramer 1957) in which the 
value of xo/L ranged from - 0- 1 to 0.1. 

In  the present work only small perturbations of the logarithmic velocity profile 
are considered where Izo/L] is of order 10-3 or less. Extension of the Lagrangian 
similarity hypothesis to this case is effected by assuming that the turbulence 
structure is determined by L and u* and that zo enters explicitly only through 
its effect upon the mean velocity of translation. The perturbed mean velocity 
profile is approximated by using the relation 

du/dz = (u,/kL) (1 - e+L)--l 

presented by Swinbank (1960) in which terms involving the exponentials are 
finally expanded in power series. Selected Project Prairie Grass data given by 
Barad (1958) and data obtained by Malhotra (1962) for diffusion in flow over a 
heated wind-tunnel floor are compared with the resulting predictions. 

All comparisons between theory and experiment made in this work support 
the hypothesis of Lagrangian similarity. 
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2. Basic theory 
Foundation for the basic theory involved in applying the Lagrangian similarity 

hypothesis to diffusion in turbulent boundary layers is given by Ratchelor 
(19593) and Ellison (1959). For clarity in extending the basic results and in the 
interpretation of experimental data, a brief review of the basic theory is presented 
here. The formulations needed for treating the experimental data are then 
developed. 

2.1. Review of basic theory 

Only motion of a marked fluid particle or some conserved scalar entity which is 
carried with the fluid without affecting the fluid motion is considered. The flow 
considered is a region of the boundary layer where the mean fluid velocity is 
two-dimensional and is determined by only the shear velocity u*, excepting for 
the roughness length zo which is a measure of the scale of turbulence where the 
mean velocity vanishes, i.e. a region where 

u = U*f  (zlzo). (1) 

For such a region of flow the hypothesis may be expressed as follows: 
For a marked particle which is a t  z = 78 when t = 0, the statistical properties 
of particle motion a t  time t depend only upon u* and t - t, when t is of order 
h/u, or larger, where t ,  is a virtual time origin with magnitude of order hlu,. 

A direct result of the hypothesis is that relative to the mean position (3, 0, Z), 
the distribution of particle-displacement probability density for an ensemble 
of single-particle releases P,, will be similar in shape for t of order hlu, or larger; 
thus, 

x--x y z - z  psp = II. 7, F) Z).  ( z z z  

This form follows from dimensional reasoning since the only length arising from 
variables in the hypothesis is u*(t - t,) which is shown in the next paragraph to 
be proportional to 5. 

For particles released from z = h a t  t = 0 ,  a relationship can be obtained 
between the mean longitudinal position X and the mean vertical positon Z at 
any time when t is of order h/u, or larger. As a consequence of the hypothesis 
three equations may be written 

dZZldt2 K u*/(t  - t,)) (3) 

d%/dt2 cc u*/(t - t,) (4) 

and d2ij/dt2 cc u*/( t  - to). ( 5 )  

We see that ( 5 )  is trivial since the assumed mean flow does not vary in the 
y-direction; therefore, because of symmetry d2jj/dt2 = dTj/dt = 0, and Tj = 0 by 
proper selection of the origin of co-ordinates. If d5ldt is to be finite for all finite 
time, the constant of proportionality for (3) must be zero and the equation for 
Z becomes (for t 9 h/u*) 

cl,"/dt = bu*, (6) 
4-2 
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where b is a new universal constant which we shall call Batchelor's constant. 
Subject to the condition that Z = h at t = 0, the mean vertical displacement of 
a particle a t  time t is given by 

= bu, + 

An integration of (4) gives the rate of change of the mean longitudinal position 
of a particle as a function of time. However, neglecting longitudinal diffusion, 
the velocity dZldt may be given with reasonable exactness by the mean fluid 
velocity at height z = Z corresponding to x = X: since the rate of change of X is 
small compared to that for Z; therefore, 

(7) 

dZ/dt = u* f(X/zo). (8) 

dZ/dZ = ( l / b ) f (2 / zo ) .  (9) 

The time variable t may be replaced with the variable 5, by virtue of (7), to give 

Thus, the mean longitudinal position is given by 

X = - f - &+const., 3 (3 
and may be obtained from a knowledge of the mean-velocity function f. 

The hypothesis is used to obtain information on the concentration field by 
employing the probability density function in the form given by ( 2 ) .  When Q 
particles are released from a point instantaneously the concentration x at 
(x, y, z )  is proportional to the probability density at the same point; therefore, 

Xiustantaneous point source = 3 II. (7 3 2 7 7 * 
x-Z z-X) 

For the continuous point source the mean concentration xCD is then obtained 
by integration over all time to give 

"II. xCp = QcpJo 3 dt. 

Since the function @ is expected to have a sharp maximum at x = Z, an approxi- 
mate expression may be obtained for xcp by changing the variable of integration 
to (x - Z)/Z and considering that the contribution a t  x = Z dominates the integral. 
Effecting the change of variable through (7) and (8) gives 

and the maximum ground-level concentration is 

Thus, when $ has a sharp peak at x = X, 

where Z and X(x) are related by (10). 
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The fundamental equations resulting from the Lagrangian similarity hypo- 
thesis are (10) and (13) while (15) permits calculation of the way in which xco 
varies with distance downstream from the source. 

2.2. Equations for neutral boundary layer, logarithmic velocity distribution 

In  this case, expressions for the dependence on x of the maximum ground-level 
concentration are presented for continuous point and line sources and an expres- 
sion for plume-width growth with x is given for a continuous point source. The 
mean velocity distribution is given by 

= (u*/k)log ( Z l Z O ) ,  (16) 

where k is the K&rmBn constant. Particles released at X = h when t = 0 do not 
acquire a motion identical with the fluid motion until a time t, of order h/u* 
has elapsed. During this time of relaxation particles travel, in the mean, a dis- 
tance X, of order u(h) h/u,. Insufficient information is available to determine 
the true form for the relaxation distance ?EV; a crude approximation for 2, is 
5, = cu(h)h/u,, when 2 = h, and this will be used with the constant of pro- 
portionality c taken to be unity. Fortunately, as can be seen from the equations 
which follow, the uncertainty in the relaxation distance is a defect in the theory 
only at short distances downstream from the source or where 2 is of order 5. 
The mean trajectory defined by (10) with the approximate condition that 
5 = u(h) (h/u*) at 2 = h becomes 

h h  

20 20 20 zo xo 

- -  
bk-=-lOg-- x z  ’ (“ih)+(b-l)-log-,  - 

or, introducing dimensionless variables 5 = X / z o ,  5 = X/zo and H = h/zo, 

bkg = Clogc-(c-H)+(b- 1)HlogH. (18) 

The maximum ground-level concentration given by (15) for a continuous 
point source takes on the form 

xcp(O,O,  1) cc Qcpk/u*z:C2logC (19) 

XCl(O,O, 1) CC &czk/u*~oclogc. (20) 

and the corresponding expression for the continuous line source is 

All the experimental data reported in the literature are used later to determine 
the power m in an expression of the form x oc xm. Therefore, in comparing theory 
and experiment, an expression for m must be obtained from (18) and (19) or (20). 
Since m represents the slope of a tangent to points on the curve where logx is 
a function of log c, the required relationships are 

and 



54 J .  E.  Cemznk 

If the probability density function does exhibit similarity as expressed by (2), 
it  follows that any measure of the plume width will vary with x in the same 
manner as does 5 (which is equally true of any measure of the plume height). 
Let the relationship for plume width Y be 

Y K xn. (23) 

We see from (18) that, for the continuous point source, 

2.3. Equations for a non-neutral boundary layer, 
perturbed logar i~~mic  velocity d ~ ~ ~ r ~ b u t ~ o n  

Lagrangian similarity will be assumed for this case, which was also treated by 
Gifford (1962) without including the parameter H .  Only small departures from 
neutral stability are finally considered, with the result that simple but relatively 
restricted expressions for mcp and ncp are obtained. 

When vertical temperature gradients are caused by heat transfer to or from 
the solid boundary Monin & Obukhov (1954) have shown by similarity arguments 
that the effect upon the turbulence structure in the region of constant turbulent 
shear stress and heat transfer may be measured through a length scale L. This 
length is defined by 

where g is the acceleration due to gravity, T is the mean absolute temperature 
of the layer and q is the rate of turbulent heat transfer for unit area. For this 
case (I; + 0), the following hypothesis of Lagrangian similarity is introduced: 

For a marked particle which is a t  z = h when t = 0, the statistical properties 
of particle motion a t  time t depend upon u*, L and t -t, when t is of order 
h/u,  or larger (t, is a virtual time origin with magnitude of order h/u,). 
A change in the stability length L produces a change in the scaling length 
for distributions of the statistical properties but not a change in their shape. 

This form of the Lagrangian similarity hypothesis is consistent with the formula- 
tion of Gifford (1962) in which the distribution of particle-displacement prob- 
ability density was taken to be similar when scaled by the reference length Z 
alone. In  other words, this form is consistent with the assumption that Psp is 
given by (2) for both the neutral and diabatic boundary layers with only a modi- 
fication of Z and x resulting from a change in L. Support for this statement of the 
hypothesis is given by Malhotra’s (1962) conclusion that mean concentration 
distributions are similar in shape for the range of L covered in his experiments. 
The expression for 5 equivalent to (6) becomes for this case 

dg/dt = bu, $(Z/L), (25) 

where Monin (1959) finds the function Q to be 
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If the form for the mean velocity distribution proposed by Swinbank (1960), viz. 

is accepted, then (25) may be written simply as 

&/dt = bu, e-taK, (28) 

where a = x , / L  An integration of (27) and use of (28) gives an equation for the 
trajectory of mean position of a particle moving in a stratified surface layer. This 
equation in dimensionless form is 

Subject to the restrictions that la\ and la1 5 < 1 the exponentials in (29) may 
be approximated by the first two terms of a power-series expansion. Integration 
of the resulting equation with the condition that Z = h when 3 = u(h) (h/u*) gives 

bk< = (Clog 5 - 5) + a( - 5+ 2'5' + gg' log 5) - ( H  log H - H )  
- a( - H + &H2 +@Plog H )  + bH[logH + a(H - l)]. (30) 

The expression for maximum ground-level concentration resulting from a con- 
tinuous point source is obtained from (14) and has the form 

Using the same method to obtain m, as was used to arrive at (21), we find 

For a continuous line source the exponent m,, is found to be 

The exponent ncp giving the growth rate of the plume width or height for a 
continuous point source is 

(34) 
b J 4  ncp = - 

5[log 5+ a+ 451% 5- In '  

Of course, (34) should give the growth rate of the plume height for a continuous 
line source also. 

3. Diffusion data from experimental studies 
Brief descriptions will be presented of the experimental studies in the labora- 

tory and in the atmosphere in which data required to test one or more of the 
equations for mCp, m,, or ncp were obtained. The essential data from these experi- 
ments are tabulated in tables 1 and 2. All experimental values of nw were 
obtained from information on plume width. 
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3.1. Diffusion data for neutral boundary layers (table 1) 

The data of Davar (1961) and Malhotra (1962) were obtained by diffusing 
ammonia gas in a turbulent boundary layer formed on the smooth floor of a 
wind-tunnel test section which was 6 x 6ft. square and 24ft. long. By using 
roughness elements at the beginning of the test section a boundary layer about 
3in. thick was created at the location of the Source when the ambient velocity 
was in the range 6-25 ft.jsec. Ammonia gas was introduced through a tube 0.1 in. 
in diameter penetrating the floor and turned through 90" to emit gas in the 
direction of mean flow a t  a maximum elevation of about &in. 

Poreh (1 962) studied the diffusion of ammonia gas from a line source made from 
a porous strip &in. wide placed flush in a smooth floor and orientated a t  right 
angles to the mean-flow direction. The work of Poreh was accomplished in a wind- 
tunnel test section 6 x 6 ft. square by 80 ft. long with an ambient air-speed range 
of 9-17 ft./sec. At the source the boundary-layer thickness ranged from 5 to 7 in. 

Wieghardt (1948) studied the diffusion of heat created by an electrically heated 
coil 3 mm in diameter placed in a slot cut into an otherwise smooth floor. To pro- 
duce the point source, a lain.-long slot with axis in the flow direction was used 
while the line source was created by a slot cut across the entire width of the tunnel. 
Dimensions of the tunnel used by Wieghardt were 49ft. wide, 1.3 increasing 
to 2ft. high and 20ft. long. The mean air-speed range was 17 to 100ft./sec. 

The exponents given for the field data obtained at Porton represent the mean 
values of several separate experiments. In  each case smoke was diffused into a 
nearly neutral atmosphere from smoke candles or other smoke generators placed 
on the ground. The site for the Porton studies was flat grassland. Although no 
exactly neutral conditions were encountered during the experiments of Project 
Prairie Grass (Barad 1958), Cramer (1957) estimates the exponents for a point 
source from the near neutral data. These experiments were realized by releasing 
sulphur dioxide into the atmosphere from a point source a t  a height of 30cm. 
As at  the Porton site, the terrain was flat grassland. 

3.2. Diffusion data for non-neutral boundary layers (table 2) 

Laboratory diffusion data for non-neutral flow were obtained by Malhotra 
(1962) in the same wind tunnel used for the neutral flow excepting that a portion 
of the floor 6 x loft. in area was replaced by a heated aluminium plate. Plate 
surface-ambient air temperature differences up to 200°F a t  an air speed of 
6ft./sec were used. The ammonia gas source was placed 2ft. downstream from 
the upstream edge of the heated plate with this edge being 4 ft. downstream from 
the origin of the momentum boundary layer. This produced a momentum 
boundary-layer thickness of about 3.5 in. and a temperature boundary-layer 
thickness of about 2 in. a t  the source, 

Only two experiments of the Project Prairie Grass series are examined in 
detail. These particular experiments (23 and 57) were selected because the 
inversion and lapse respectively were weak and because no large-scale transverse 
wind fluctuations occurred during the experiments to produce multiple maxima 
in the transverse concentration distribution. 



E
xp

er
im

en
t 

D
av

ar
 1

96
1 

M
al

ho
tr

a 
19

62
 

W
ie

gh
ar

dt
 1

94
8 

M
al

ho
tr

a 
19

62
 

P
or

eh
 1

96
2 

W
ie

gh
ar

dt
 1

94
8 

P
o

rt
o

n
 (

P
as

qu
il

l 
19

62
) 

P
ra

ir
ie

 G
ra

ss
 (

C
ra

m
er

 1
95

7)
 

P
or

t,
on

 (
P

as
qu

il
l 

19
62

) 

1.
 

1.
5 

9.
9 

x 
10

-5
 

4.
5 

10
.5

 

4.
5 

2.
5 

2.
5 

2
-5

 
2

-5
 

10
.5

 

1.
03

 
3.

7 
1.

03
 

2.
0 

L
ab

or
at

or
y,

 p
oi

nt
 s

ou
rc

e 
9.

38
 x

 1
0-

3 
co
 

62
 1

 
95

 
9.

38
 

co
 

17
50

 
87

 

5.
20

 
00

 
73

80
 

20
8 

5.
20

 
co
 

41
00

 
20

8 
9.

38
 

a,
 

97
5 

87
 

-
 

0
0
 

11
40

 
-
 

-
 

co
 

21
30

 
-
 

2.
 

L
ab

o
ra

to
ry

, l
in

e 
so

ur
ce

 
co
 

73
80

 
20

8 
4

-5
 

2.
5 

x 
10

-5
 

5.
20

 x
 1

0-
3 

7.
5 

6.
2 

-
 

co
 

43
50

 
-
 

7.
5 

4.
8 

-
 

co
 

64
00

 
-
 

7.
5 

3.
5 

-
 

co
 

87
00

 
-
 

1.
23

 
3.

8 
-
 

co
 

13
20

 
-
 

1.
23

 
2.

04
 

-
 

co
 

24
70

 
-
 

3.
 

F
ie

ld
, 

po
in

t 
so

ur
ce

 
16

40
 

9.
85

 x
 

5*
 

x 
10

-1
 

a3
 

68
5 

5 
65

6 
9.

85
 

5 
co
 

27
3 

5 

19
76

 
3.

28
 

9.
85

 
co
 

24
60

 
30

 

4.
 

F
ie

ld
, 

li
ne

 s
ou

rc
e 

16
40

 
9.

85
 x

 
5*

 
x1

0
-1

 
03

 
68

5 
5 

* 
E

st
im

at
ed

 w
it

h 
th

e 
as

si
st

an
ce

 o
f 

D
r 

P
as

qu
il

l.
 

T
A

B
L

E
 1. 

D
at

a 
on

 d
if

fu
si

on
 in

 n
eu

tr
al

 b
ou

nd
ar

y 
la

ye
rs

. 

U
 0 0
 

0
 0 

1.
20

 
1.

47
 

1.
47

 

1.
42

 
1.

42
 

1.
76

 
-
 

1
-8

 



X
 

E
xp

er
im

en
t 

(ft
.) 

M
al

ho
tr

a 
19

62
 

4 4 4 

P
ra

ir
ie

 G
ra

ss
 

(B
ar

ad
 1

95
8)

 

E
x

p
t.

 n
o.

 2
3 

24
6 

49
2 

98
8 

19
76

 

E
x

p
t.

 n
o.

 5
7 

24
6 

49
2 

98
8 

19
76

 

1-
08

 x 
10

-4
 

1.
53

 x
 1

0-
4 

8.
3 

x 
10

-6
 

3-
28

 x
 

3.
28

 x
 

3.
28

 x
 

3.
28

 x
 

3.
28

 x
 

3.
28

 x
 

3.
28

 x
 

3-
28

 x
 1

0-
2 

h 
L

 
(f

t.
1
 

(f
t.
1 

kb
t 

H
 

1.
 

L
ab

o
ra

to
ry

, p
oi

nt
 s

ou
rc

e 
9.

38
 x

 1
0-

3 
-0

.3
4 

14
40

 
87

 
9

-3
8

 x 
10

-3
 

-0
.9

2 
19

50
 

11
3 

9.
38

 x
 1

0-
3 

-0
.0

9 
10

50
 

61
 

2.
 

F
ie

ld
, 

po
in

t 
so

ur
ce

 

9.
85

 x
 1

0
-l

 
19

.7
 

30
7 

30
 

9.
85

 x
 lo

-' 
19

.7
 

61
5 

30
 

9.
85

 x
 1

0-
1 

19
.7

 
12

30
 

30
 

9.
85

 x
 lo

-' 
19

.7
 

24
60

 
30

 

9.
85

 x
 lo

-' 
-
 3

9.
4 

30
7 

30
 

9.
85

 x
 1

0
-l

 
-
 3

9.
4 

61
5 

30
 

9
.8

5
~

 10
-1

 
-3

9.
4 

12
30

 
30

 
9

.8
5

~
 1
0

-l
 

-3
9.

4 
24

60
 

30
 

a 

-
 3

.2
 x

 1
0-

4 
-8

.9
 

x 
10

-5
 

-
 1.

7 
x 

10
-3

 

1-
87

 x 
10

-3
 

1.
67

 x
 1

0-
3 

1.
m

 x
 1

0-
3 

1-
67

 x
 1

0-
3 

-
 8.

33
 x

 1
0-

4 
-
 8.

33
 x

 1
0-

4 
-
 8.

33
 x

 1
0-

4 
-
 8.

33
 x

 1
0-

4 

-
%

%
I
 

r-
--

7 

E
x

p
. 

C
al

c.
 

1.
60

 
1.

58
 

1.
61

 
1.

51
 

1.
84

 
1.

75
 

1.
48

 
-
 

1.
56

 
-
 

1.
64

 
-
 

1.
70

 
-
 

1.
59

 
-
 

1.
69

 
-
 

1.
81

 
-
 

1.
89

 
-
 

n
C

 8
 

r
-
L

7
 

E
xp

. 
C

al
c.

 

0.
69

 
0.

71
 

0.
68

 
0.

70
 

0.
73

 
0.

80
 

T
A

B
L

E
 2.
 

D
at

a 
on

 d
if

fu
si

on
 i

n 
m

il
dl

y 
di

ab
at

ic
 b

ou
nd

ar
y 

la
ye

rs
. 



Lagrangian similarity and dijfusion in turbulent shear flow 59 

3.3. Calculation of parameters 
For the laboratory experiments, in which the boundaries were all smooth, the 
value of zo was estimated by using the mean velocity function 

This gives the result zo = 0.141 (v/u*).  The value of the shear velocity u+ was taken 
as the mean value over the distance x up to where the exponent of x was measured 
and was calculated either by differentiation of the momentum thickness I3 or by 
using the Schultz-Grunow drag formula (Z/C’)* = 6.30 log (uamb 6/v) + 2.40. The 
stability length L was obtained from the basic definition for Malhotra’s data since 
all the necessary quantities were known. For the Prairie Grass data Lwas obtained 
from the integral of (27) using the mean velocity at three different elevations. 

In  all cases the exponents mcp, ?n,, and ncp were obtained by measuring the 
slope of a tangent drawn to curves constructed by plotting the logarithm of the 
appropriate variable as a function of logx. In  all cases x was restricted so that 
h / S  6 0.40. In  this ratio 6 is the boundary-layer thickness and h is a character- 
istic length of the concentration field, the height x where the mean concentration 
is one-half the maximum. Poreh found that for a line source the concentration 
profiles are similar for h/6 < 0.40 but then graduallychange form until h/6 = 0.64, 
when a new similarity profile is attained. Since the similarity hypothesis is 
formulated only for the inner part of the boundary layer, only the first similarity 
region is strictly within the scope of the analysis. 

In  numerical calculations, the value of KkmBn’s constant k has been taken 
as 0.41 and the value of b (Batchelor’s constant) has been taken as 0.1. The value 
of 0.1 for b gives good agreement with the data (and, as can be seen from figure 1, 
a change in b from 0.1 to 0.2 or larger gives poor agreement) but should be con- 
sidered only as a rough approximation until more diffusion data are available 
to determine the true value. Batchelor (19593) estimated b to be about 0.1 or 
0.2. A rough estimate of Batchelor’s constant may be obtained by multiplying 
the approximate maximum vertical plume velocity of 0-75u, reported by Monin 
(1959) by the ratio of elevation at mean concentration to elevation at 0.01 of 
maximum concentration (outer edge of plume). Using the exponential function 
for the vertical concentration distribution given by Calder (1952), this ratio of 
elevations is 4.82, which gives a value for b of 0.15. Ellison (1959) found that b 
would be equal to k and thus have a value of about 0.4 provided that a, K-theory 
of diffusion is valid and the vertical diffusion coeEcients for mass and momentum 
are the same; the data described here does not support such a large value of k. 

u/u* = k-llog (zu*/v) + 4.9. 

4. Discussion 
Data given in tables 1 and 2 obtained from the studies briefly described in the 

preceding section may be used to determine the validity of results obtained from 
the hypothesis of Lagrangian similarity. Figures 1 to 4 show both the experi- 
mental data and selected theoretical curves to facilitate comparison. For an 
aerodynamically smooth surface the curve where H = 75 corresponds to h equal 
to  the laminar sublayer thickness and H = 225 corresponds to an h where tran- 
sition to the logarithmic proflle has been completed. The curves for H equal to 
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30 and 100 correspond closely with the value of H for the Prairie Grass data and 
certain wind-tunnel data, respectively. The degree of agreement between theory 
and data is sufficiently good to justify use of the Lagrangian similarity hypo- 
thesis as the basis of diffusion modelling in the atmospheric surface layer. 

1 oo 10' loz 1 o3 10' 105 1 o6 
kbt; 

FIGURE 1. The exponent-of-distance rnep for attenuation of maximum ground-level con- 
centration as a function of distance and source height resulting from a point source in a 
neutral boundary layer: __ , equations (18) and (21); v, Davar (1961); A ,  Malhotra 
(1962) ; 0, Wieghardt (1948) ; 0,  mean Prairie Grass data, a = 0 (Cramer 1957) ; +, mean 
Porton data, a = 0 (Pasquill 1962); 0 ,  Prairie Grass experiment no. 23, a = 1.67 x 
(Barad 1958); 0, Prairie Grass experiment no. 57, a = - 8.33 x (Barad 1958). 
Numbers opposite data points give values of H .  

4.1. Comparison of theory and experiment 
In  figure 1 all the values of m, for aerodynamically smooth boundaries (wind- 
tunnel experiments) correspond to theoretical values of M > 75. Where the value 
of H is known from the experimental conditions, the exponent mcp from experi- 
ment is within 10% of the corresponding theoretical value. For the data of 
Wieghardt in which H is not explicitly known, the relationship between the 
experimental points and the theoretical curves indicate that the apparent source 
height for a source embedded in a smooth boundary is between the height of the 
laminar sublayer and the height corresponding to where the logarithmic velocity 
distribution is attained. The mean Porton and Prairie Grass data for neutral 
conditions shown in figure 1 are within about 2 % of the corresponding theoretical 
values. Project Prairie Grass data for mildly non-neutral surface layers are also 
shown in figure 1 to emphasize the importance of the parameter H in the present 
theory. As is evident, the mild lapse and mild inversion produce values of mcp 
which diverge with increasing distance $, above and below respectively, from 
the neutral curve for II = 30. 
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Figure 2 gives the available experimental data and theoretical curves for 
attenuation of maximum ground-level concentration for a continuous line 
source in neutral boundary layers in terms of mcl. The wind-tunnel data of known 
H due to Malhotra was obtained by integration of his point-source concentrations 
and is about 5 yo lower than the corresponding theoretical value. Wind-tunnel 
data of Poreh with gas emitted from a smooth porous line source is consistent 
with the idea of the effective source-height parameter for such sources being in 
the range 75 < H < 225. The progression of points from left to right represent 

FIGURE 2. The exponent-of-distance m,, for attenuation of maximum ground-level con- 
centration as a function of distance and source height resulting from a line source in a 
neutral boundary layer: __ , equations (18) and (22); A ,  integrated point-source data, 
Malhotra (1962); 0, Poreh (1962); 0, Wieghardt (1948); I, Porton data (Pasquill 1962). 
Numbers opposite data points give values of H .  

increasing mean ambient velocity and consequently decreasing values of zo. 
Since the data of Wieghardt correspond to values of H < 75 for this case, it  is 
concluded that the transverse boundary slot containing the source produced 
a large-scale disturbance making the effective zo (local turbulence scale) larger 
than that calculated by considering the boundary to be smooth. Field data 
obtained at Porton give a range of mcE with a mean value very near the predicted 
value of about - 0.95. The scatter of m,., at this site can easily be accounted for 
through varying roughness and small departures from neutral conditions. 

Both averagevaluesof ncp giving the rate of plume-width growth for Porton and 
Prairie Grass data under neutral conditions are in good agreement with the 
theoretical values shown in figure 3. Values of n, for the neutral wind-tunnel 
data and the corresponding theoretical values are also in satisfactory agreement. 

The data and theoretical curves for mep when small departures from neutral 
conditions exist are given in figure 4 and table 2. The two sets of Project Prairie 
Grass data are in fair agreement with the curves for I$ = 30 and a = & 0.001. 
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FIGURE 3. The exponent-of-distance nc8 for plume-width growth as a function of distance 
and source height resulting from a point source in a neutral boundary layer: -, equa- 
tions (18) and (24); A ,  Malhotra (1962); 0, Wieghardt (1948); 0 ,  mean Prairie Grass 
data, a = 0 (Cramer 1957); +, mean Porton data, a = 0 (Pasquill 1962). Numbers opposite 
data points give values of H .  

FIGURE 4. The exponent-of-distance men for attenuation of maximum ground-level con- 
centration as a function of distance, source height and stability resulting from a point 
source in a diabatic boundary layer: -, equations (30) and (32); A, Malhotra (1962); 
0 ,  Prairie Grass experiment no. 23, a = 1.67 x (Barad 1958); 0 ,  Prairie Grass 
experiment no. 57, a = - 8.33 x (Barad 1958). Numbers opposite data points give 
values of H .  



Lagrangian similarity and di f fwion in turbulent sheur flow 63 

Gifford, in treating average values of mcp over certain ranges of the stability 
length covering the entire range of atmospheric conditions encountered during 
the Prairie Grass experiments, found good agreement with his theoretical pre- 
dictions. Although Gifford included the effect of large departures from neutral 
conditions by using the mean velocity distribution functions of Monin (1959), he 
did not consider the important parameter H .  Calculated and experimental values 
of mcp and ncp corresponding to the conditions created over a heated plate in the 
studies of Malhotra are given in table 2. Fair agreement is indicated with & 8 yo 
differences. It should be noted that the calculated values of mcp are consistently 
lower and that the values of ncp are consistently higher than the experimental 
values and the differences generally increase with increasing instability. This 
appears to be caused by small secondary circulations producing upward flow 
above the centre of the heated boundary where the diffusion of mass was centred. 

4.2. Signi$cance of $findings for  modelling 

Diffusion in the boundary layer of a wind-tunnel model of the atmospheric 
surface layer will, according to (30), (32) and (34), be similar to the prototype 
if the parameters H and CL are the same for both cases. Inoue (1959) reached the 
same conclusion by requiring that the angle of diffusion and a dimensionless 
diffusion length U T / ~  (7 is the Lagrangian time-scale for motion in the direction 
of mean velicity U )  be the same for both model and prototype. Of course, the 
modelling can be accomplished only if the wind-tunnel boundary layer is suffi- 
ciently thick to ensure that A/& < 0.4 over the ranges of covering the model. 

An even more important consequence of the agreement between results of the 
Lagrangian similarity hypothesis and data from field and laboratory is the 
implied similarity of the turbulence structures. This means that in properly 
designed laboratory experiments measurements of turbulence structure for 
controlled stability and roughness will yield information applicable to the 
atmospheric surface layer. 

5. Conclusions 
Examination of the data and analytical results presented here strongly support 

the Lagrangian similarity hypothesis. This simple but powerful concept affords 
a rational basis for describing the gross characteristics of a diffusion field within 
a turbulent boundary layer. The use of zo as a reference scale of turbulence 
successfully accounts for differences in diffusion rates when diffusion takes place 
on scales varying from those encountered in the laboratory to those existing in 
the atmospheric surface layer. Further study of diffusion rates for a wide range 
of zo and H ,  such as can be accomplished in a wind tunnel using boundaries with 
fixed or flexible roughness elements accompanied by heating or cooling of the 
boundary would be particularly illuminating. In  applying the existing formula- 
tion of the Lagrangian similarity hypothesis to diffusion in wind-tunnel boun- 
dary layers the plume of diffusing mass or heat should be well within the boundary 
layer (i.e. A/& < 0.40). On the other hand, the foregoing analytical results do 
not apply immediately downstream from the source for distances smaller than 
u(h) (hlU*)- 
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The analysis states that two fields of diffusion within the inner region of a 
turbulent boundary layer will be similar if H and a for one field are equal to H 
and 01. respectively for the other field. This not only gives a basis for modelling 
practical cases of diffusion in the atmospheric surface layer but also provides 
a means by which laboratory measurements of basic turbulence structure may 
be applied to the atmosphere. 
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